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A Simple Model of Pulsed Ejector Thrust Augmentation 
 

Jack Wilson 
QSS Group, Inc. 

Cleveland, Ohio 44135 
 
 

Summary 
 

A simple model of thrust augmentation from a pulsed source is described. In the model it is assumed 
that the flow into the ejector is quasi-steady, and can be calculated using potential flow techniques. The 
velocity of the flow is related to the speed of the starting vortex ring formed by the jet. The vortex ring 
properties are obtained from the slug model, knowing the jet diameter, speed and slug length. The model, 
when combined with experimental results, predicts an optimum ejector radius for thrust augmentation. 

Data on pulsed ejector performance for comparison with the model was obtained using a shrouded 
Hartmann-Sprenger tube as the pulsed jet source. A statistical experiment, in which ejector length, 
diameter, and nose radius were independent parameters, was performed at four different frequencies. 
These frequencies corresponded to four different slug length to diameter ratios, two below cut-off, and 
two above. Comparison of the model with the experimental data showed reasonable agreement. 
Maximum pulsed thrust augmentation is shown to occur for a pulsed source with slug length to diameter 
ratio equal to the cut-off value. 

 
 

Introduction 
 
The current interest in Pulsed Detonation Engines has revived interest in pulsed ejectors, since the 

latter may potentially increase the thrust, and reduce the noise level, of such engines with little additional 
hardware. This supposition is based on the few experiments that have been reported in which thrust 
augmentation from a pulsating jet was measured. Lockwood (1961), using a pulsejet driver, measured 
thrust augmentations as high as 1.9, with a very short ejector. Binder and Didelle (1975), using a jet 
interrupted by a butterfly valve, also observed a maximum thrust augmentation ratio of 1.9, but with a 
much longer ejector. Bertin (1955), also claimed a thrust augmentation ratio of around 2, but gave few 
details. More recently, Paxson, Wilson, and Dougherty, (2002) have repeated Lockwood’s experiment, 
with similar results, although the optimum ejector was rather longer than was Lockwood’s. Wilson and 
Paxson (2002), using a Hartmann-Sprenger, or resonance, tube to generate a pulsed jet, measured a 
maximum thrust augmentation of 1.32, and found, as did Paxson, et al., that there was an optimum 
diameter for the ejector. Early theoretical work by Johnson and Yang (1968) as well as recent efforts by 
Han (2002) and Marzouk and Wahab (1997) have concentrated on one-dimensional calculations, using 
the method of characteristics, to explain the mass flow augmentation of pulsed ejectors, without 
calculating thrust augmentation. 

A major feature of any pulsed jet flow is the starting vortex ring (Elder and deHaas, 1952, Das et al., 
2001). The core of this ring exhibits pressures significantly below the ambient pressure, which makes it 
unlikely that it can be represented in a one-dimensional calculation. One objective of this work is to 
calculate the thrust on an ejector, and hence the thrust augmentation ratio, based on the properties of the 
vortex ring. The aim is not so much to produce an accurate expression, as to develop a formula which will 
give some idea as to the parameters which affect ejector performance. In particular, it is of interest to 
explore whether there is a maximum value of pulsed thrust augmentation. 



NASA/CR—2003-212541 2

In addition, experiments to measure pulsed thrust augmentation were made using a shrouded 
Hartmann-Sprenger tube as the pulsed source. By varying the tube and shroud lengths, four different 
frequencies were generated. A statistical experiment was designed to explore the effects of ejector length, 
radius, and nose radius. This was repeated at each frequency. The experimental results are compared with 
the theoretical estimates. 

 
 

Description of the Model 
 

Model Outline 
 

For simplicity, as shown in figure 1, the pulsed jet will be assumed to consist of repeated slugs of 
length L, with constant velocity U, and density ρ, issuing from a tube of diameter D, as would be 
produced by a piston impulsively started with velocity U and stopping after a stroke L. According to 
Gharib, Rambod, and Shariff (1998), the slugs will transform entirely into vortex rings, provided L/D ≤ 4. 
Above a value of L/D = 4, vortex rings will form with circulation equal to that produced at L/D = 4, 
followed by a trailing jet containing the rest of the circulation. Each vortex ring will have a radius R, and 
a core of ‘radius’ a. Strictly speaking, the core may not be a circle, therefore does not have a radius. 
However, it is approximately circular, and what is meant by a, is the square root of the core area divided 
by π. The vortex rings will propagate downstream, traveling at a speed W, and impact the ejector, 
producing thrust. Thrust is presumably created by suction on the nose of the ejector. The ejectors used in 
this study are cylindrical, with an inner radius equal to Rej, and a rounded nose of radius rn. The trailing 
edge is tapered, with a blunt end. The resulting flow could create suction at the trailing edge also, thereby 
canceling the thrust. At this point, it will simply be assumed that this does not happen. Thus the pressure 
at the trailing edge will be taken to be the ambient pressure, p∞. With the above assumptions, the force on 
the ejector is 

  

 Fejector = 2π ∫
nr2

0
(p(r,t) – p∞)(Rej + r) dr  (1) 

in which r is distance in the radial direction at the nose of the ejector, and p(r,t) the pressure on the nose 
of the ejector, which may be a function of time and radius. The thrust augmentation ratio, α is defined as 
the thrust of jet plus ejector divided by the thrust of the jet alone, i.e. 
 

 

L

U W

R
Rej

a

D

L = U�

Slug Vortex ring Ejector

K

ε = a/R

Figure 1.—Schematic diagram of the slug model of vortex ring formation.
  The entrance to the ejector is also indicated on the right.  
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 α = 1 + Fejector/Tjet  (2) 
 
in which Tjet is the thrust of the jet itself. In order to evaluate the thrust augmentation further, details of the 
vortex ring are needed. 
 

 
Vortex Ring Model 

 
Given the properties of the jet, Linden and Turner (2001) have shown that the properties of the 

vortex, i.e. R, a, and W, are uniquely determined as a function of the value of L/D for the jet. To 
demonstrate this, they balanced the jet circulation, impulse and energy with those for the ring, taking the 
ring values from the work of Norbury (1973). Norbury solved the equations for a vortex ring numerically, 
at a few values of ε = a/R. Since the interest here is in small values of  ε, at several values of this ratio, it 
is preferable to have a continuous (in ε) representation. Consequently the ring values used will be a 
modified version of those of Fraenkel (1972), who used a solution as a series in ε, valid for small ε, 
although in practice, the results agree well with Norbury’s values for quite large values of ε. Then with 
values for the jet in the middle of the equations below, and values for the vortex ring on the right hand 
side, the balance equations become, using Fraenkel’s series representations 

 
 Circulation: Kslug = U L/2 Kring = Γ Kslug  (3)  
 
 Impulse: P = π ρ UD2 L/4 = π ρ R2 Kring (1 + 3 ε2/4) (4a) 
 
 Energy: T = π ρ U2D2 L/8 = ρ R Kring

2 [0.5 ln (8/ε) – 7/8 + (3 ε2/16) ln (8/ε)] (5a) 
 

Following Linden and Turner, these equations can be combined to give 
 

 (L/D) Γ 1.5 = ( ) ( )22 ///
2
1

ringring RKTKRP ρρπ  (6a) 

  

 =  π ( ) ( ) ( ) ( )[ ]εε+−εε+ /8ln16/38/7/8ln5.0/4/31 22  (6b) 
 
The right hand side of this equation, and hence L/D also, is a function of ε only. In order to agree 

better with Norbury’s values of impulse and energy, the above series were modified to 
  
 Pring = π ρ R2 Kring (1 + 0.303 ε + 0.6184 ε2 – 0.3563 ε3)  (4b) 
 
 Tring = ρ R Kring

2 [0.5 ln (8/ε) – 0.8594 + 0.098 ε2 ln (8/ε)]  (5b) 
 
In figure 2(a), L/D is plotted against ε using (4b) and (5b) in (6a), with Γ = 1, as assumed by Linden 

and Turner. Also shown are results from Linden and Turner for ε = 0.2, 0.4, and 0.6. The agreement is 
quite good, even for ε = 0.6. The limiting value of L/D = 4 is found at a value of ε = 0.55, so higher 
values of ε than this are not needed. 

It was implicitly assumed above that U was a constant independent of time. This is rarely true in 
practice. If the actual temporal distribution of velocity from the source is represented by u(t) then it 
follows that L = ∫ u(t) dt, and the jet circulation, impulse and energy are 

 
 Kslug = ∫ u(t)2 dt/2 = U1L/2  (7a) 
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 P = π ρ D2 L/4 (∫ u(t)2 dt/∫ u(t) dt) = π ρ D2 L U1/4  (7b) 
  
 T = π ρ D 2 L/8 (∫ u(t)3 dt/∫ u(t) dt) = π ρ D 2 L U2 

2/8  (7c) 
 

and the right hand side of (6a) is now multiplied by (U2/U1)2. 
 
Combining (3) and (4b) leads to an equation for R/D in terms of ε, and hence, through (6a), L/D.  
  

 R/D = 1/ ( )32 3563.06184.0303.012 ε−ε+ε+Γ  (8) 
 

 Fraenkel’s equation for the vortex ring velocity, W, is 
 
 W = (Kring/4πR) [ln(8/ε) – 1/4 − ε2 {(3/8) ln(8/ε)  − 15/32}]  (9a) 
 

which fits the calculated results of Norbury better if modified to 
 
 W = (Kring/4πR) [ln(8/ε) – 1/4 − 0.85 ε2 {(3/8) ln(8/ε) − 15/32}]  (9b) 
 

and using (3) and (8), the ring velocity divided by the slug velocity is seen to be a function of L/D and ε 
only, 

 

( ) ( )325.1 3563.06184.0303.012// ε−ε+ε+Γ= DLUW  

 ( ) ( ) ( ){ }[ ] π−εε−−ε× 8/32/15/8ln8/385.04/1/8ln 2  (10) 
 

and hence can also be expressed in terms of L/D.  R/D and W/U, again for Γ = 1, are also plotted against 
L/D in figure 2(a). W/U agrees well with results from Linden and Turner. However, the calculated values 
of R/D do not agree with experimental values of R/D from Liess and Didden (1975) in the dependence on 
L/D. The calculated values decrease with increasing L/D, whereas the experimental values increase.  

Shariff and Leonard (1992) have plotted ring circulation divided by slug circulation, i.e. Γ against 
L/D, using data from Didden (1979), and from Maxworthy (1977), and find that this ratio is not unity, and 
decreases with increasing L/D. They quote two expressions for Γ, but neither fits all the data. Both are 
close at L/D = 1, with Γ = 1.4, which does give the experimental value of R/D found by Liess and Didden. 
By finding a value of Γ that fits the Liess and Didden value of R/D at L/D = 2.5, the constants in the 
following expression were found,  

 
 Γ = Kring /Kslug = 0.66 + 0.74/(L/D) (11)  
 
This agrees with the two expressions quoted by Shariff and Leonard at L/D = 1, and falls between 

them at L/D = 2.5, so it does not seem unreasonable. Using Γ from (11), ε, R/D, and W/U were calculated, 
and are plotted in figure 2(b). Now there is excellent agreement between the calculated R/D and the 
experimental values of Liess and Didden.  

In summary, given the slug velocity, length and diameter, the vortex ring circulation, radius, and core 
radius, and hence velocity, can all be determined, but it is essential to input Γ as a function of L/D. 
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   model. (a) With � = 1. (b) With � = 0.66 + 0.74/(L/D).
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Force on the Ejector 
 
The exact flow of a vortex ring approaching an ejector is complex, and depends on the ratio of vortex 

ring size to ejector radius. Krutzsch (1939) reports passing rings through tubes ‘of diameter somewhat 
greater than that of the vortex ring’, although doing so increased the vortex ring decay rate. On the other 
hand, calculations and experiments by Brasseur (1979) indicate that a vortex ring will not propagate 
inside a tube of radius close to that of the vortex ring. For now it will be assumed that the net result of a 
repetitive stream of vortex rings approaching an ejector is the setting-up of a quasi-steady flow 
characterized by a centerline velocity Vej inside the ejector, whose value is as yet unknown. Thus to 
calculate the force on the ejector, if the flow field around the nose can be calculated, the pressures can be 
determined, and integrated to give the force. The nose piece of all ejectors used in this study were half of 
a ring of cross-sectional radius rn. Flow around a complete ring is, of course, the same as flow around the 
core of a vortex ring, provided the cross-sectional radius of the ring is small compared with the radius of 
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the ring itself, i.e. rn < Rej. It will be assumed that the 
flow over the ejector nose can be approximated by the 
inlet flow around a vortex ring. For a vortex ring of 
circulation Kring, a stream function exists, given by 
Lamb (1932) as 

 
        ψ(r,z) = – Kring (r1 + r2) {F1(λ) – E1(λ)}/2π  (12) 
 
where  
 

λ = (r2 – r1)/(r2 + r1) 
 
and F1(λ), E1(λ) are the complete elliptic integrals of 
the first and second kind. The radii r1 and r2 are the 
minor and major distances from the point (z,r) to the 
core ring (see fig. 3). Since this is axisymmetric flow, 
the axial and radial velocities are given by 

 
 w = (1/r) ∂ψ/∂r              v = – (1/r) ∂ψ/∂z  (13) 

 
and then, for example, 

 
 ∂ψ/∂r = – (Kring/2π)[{F1(λ) – E1(λ)} ∂/∂r (r1 + r2) + (r1 + r2) d/dλ{F1(λ) – E1(λ)}∂λ/∂r] (14) 

 
with a similar equation for ∂ψ/∂z. From Gradshteyn and Ryzhik (1994),  

 
 d/dλ{F1(λ) – E1(λ)} =  λ E1(λ)/(1 – λ2)  (15a) 
 
and 
 
 F1(λ) – E1(λ) = λ2 D(λ)  (15b) 

 
Gradshteyn and Ryzhik also list series representations of E1(λ) and D(λ). With these series, and the 

above formulae, a program was written to calculate ψ, w and v (for a given Kring) at any point (r,z). A 
version of this program was made to solve for r and z for a constant value of ψ, i.e. to find the 
streamlines. These streamlines then constitute potential solid bodies around which flow can occur. 
Examples are given in figure 4. With the velocities known at each point on any surface, the pressure 
follows from Bernoulli’s equation 

 
 p(ψ = const) – p∞ = 0.5 ρ (w2 + v2)  (16) 
 

Performing the integral 

 Fejector = 2π ∫
+ nej

ej

rR
R

2
 (p(r,z) – p∞) r dr  (17) 

 
provides the suction force, Fej, on the front of the ejector, and hence, if it is assumed that the rear of the 
ejector is at atmospheric pressure, the total force on the ejector. Obviously frictional drag has been 
ignored. Inserting (16) into (17), and re-arranging gives  

Figure 3.—Coordinate system for the vortex ring.

R

a
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r1

r2

P
w

v

r

z
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Figure 4.—Streamlines in the z-r plane through a vortex
   ring. The streamline for � = 2.5 has been taken as the
   nose of an ejector with nose radius rn.
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Figure 5.—The function f(�) versus �. The horizontal lines
   are drawn through the values of � used for each ejector.
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 Fejector = π ρ Vej
2 Rej

2 ∫
+ ejn Rr /21

1  ((w2 + v2)/Vej 
2)(r/Rej) dr/Rej  (18a) 

  
 = π ρ Vej 

2 Rej 
2 F(σ) (18b) 

  
where σ = rn/Rej. If Vej is taken to be the centerline velocity, the integral is dimensionless, a function of σ 
only, and can be determined from the calculations of velocities that gave the results in figure 4. F(σ) is 
plotted in figure 5. A useful fit to F(σ) is 

 
 F(σ) = 0.0236 + 1.0621 σ – 2.1468 σ2 + 2.3689 σ3 – 1.0074 σ4  (19) 
 

 Finally, the thrust augmentation due to the vortex ring can now be given as 
 
 αvr = 1 + π ρVej 

2 Rej 
2 F(σ)/Tjet  (20) 
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Determination of Vej 
 
In order to use eq. (20), it is necessary to know the value of Vej. A characteristic size of the vortex ring 

will be denoted Rvr, which will be approximately equal to R + a. Since the vortex rings are approaching 
the ejector with velocity W, it seems reasonable, if Rej < Rvr, that the velocity Vej should be close to W. It 
will be assumed to be proportional to it, i.e. Vej = k W. If, on the other hand, Rej > Rvr, the vortex rings will 
travel through the ejectors as ‘leaky pistons,’ with a resulting net lower value of Vej. Without an ejector, 
for a vortex ring traveling to the right at speed W, since the air traveling with the vortex ring is 
approximately an ellipsoid, the velocity on a radius through the center of the vortex for distances larger 
than Rvr will be approximately that for an ellipsoid 

 
 w = – W/2 (Rvr/r)3  (21) 
 

and the flux of air to the left in a disc of inner radius (R + a), and outer radius Rej, is  
 

 QL = – (W/2) ∫ ej
vr

R
R (Rvr/r)3 2πrdr  (22a) 

 
 = − π W (Rvr)3 [1/Rvr – 1/Rej]  (22b) 
 

The vortex ring itself will create a flux of air to the right of 
 
 QR = W π Rvr

2  (23)  
  

So that the net flux inside a cylinder of radius Rej is 
 
 Qtotal = QR + QL  (24a) 
 
 = π W Rvr

3/Rej  (24b) 
 

and the average velocity inside the cylinder is then 
 Vej = Qtotal/π Rej 

2  (25a) 
 
 = W [Rvr/Rej]3  (25b) 
 
Obviously, this formula is only approximately correct, but at least it is correct in the limit of Rej = Rvr, 

for which Vej = W, and also in the limit as Rej tends to infinity, for which Vej = 0. This would also be true 
for any expression of the form 

 
 Vej = k W [Rvr/Rej]n  (26) 
 

This is the velocity that will be used in eq. (19) when Rej > Rvr. The values of n and k will be found from 
the experiment. Given Vej, the mass augmentation factor β can be calculated as 

 
 β  = ρ π Rej

2 Vej/ jetm&  (27) 
 

in which jetm&  is the mass flow of the jet itself. 
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Pulsed Jet Source 
 

In deciding upon an experiment, it is necessary 
to choose a source producing a pulsed jet. Since a 
major interest for studying pulsed ejectors is for 
application to pulsed detonation engines, the 
optimum source would be a pulsed detonation 
device. Such devices, particularly with long duration, 
are not simple to build and operate. In contrast, a 
resonance, or Hartmann-Sprenger tube (Brocher, 
1975), is simple, and can operate continuously. This 
device consists of a steady, sonic or supersonic jet, 
which is flowing into a closed tube. Under certain 
conditions, a periodic cycle is established in which 
the jet first fills the tube, then a hammer shock inside 
the tube empties the tube, deflecting the jet from the 
tube in the process. When the tube pressure has 
fallen sufficiently, the cycle can begin again. What 
was not known at the start of this effort was whether 
this phenomenon could also produce a directed, 
pulsed jet. To attempt this, a cylindrical shroud was 
placed around the tube and jet, to collect the air 
leaving the tube and direct it out the back of the 
shroud. Resonance tubes have been shrouded 
previously (Brocher and Pinna, 1980), but with 
acoustic horns, with the objective of amplifying the 
sound. These acoustic horns were closed at the end 
where the source is located, and increased in area 
with distance away from the source. The flow from 
the horn would therefore be diverging, and the 
velocity at the exit would be reduced in value from 
that leaving the source. In order to create a more 
concentrated flow, a cylindrical shroud was used in 
the present work. This shrouded tube did produce 
vortex rings traveling along the extended axis of the 
device  

The shrouded tube used at a frequency of 550 Hz 
is shown in figure 6. A Mach 2 axisymmetric nozzle 
with a 12.7 mm diameter throat was aligned with a 
resonance tube 152 mm in length, internal diameter 
16.8 mm, and external diameter, dt = 25.4 mm. This 
was surrounded by a shroud, of internal diameter Ds 
= 50.8 mm. A needle was aligned with the axis of the 
jet to stimulate oscillations, as demonstrated by 
Brocher. Use of the needle makes the device 

relatively insensitive to the distance between nozzle exit and the tube entrance. A supply of air at a 
pressure of 7.8 atmospheres ensured Mach 2 operation exhausting to the atmosphere. The average mass 
flow was measured upstream of the nozzle, using an orifice. In order to generate a frequency of 1100 Hz, 
a plug was inserted into the resonance tube, effectively shortening it to 76 mm in length. New, longer 
tubes and shrouds were built for frequencies of 275 and 125 Hz. 

Steady flow in

Figure 6.—Schematic drawing of the shrouded 
   Hartmann-Sprenger tube.

Pulsed flow out

Shroud
(2 in. ID)

Needle

6 in.

Resonance tube
(0.66 in. ID)
1.00 in. OD

Mach 2 nozzle
(0.5 in. throat
diameter)

Support
vane
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Design of the Experiment 
 
The unsteady experiments to date in which thrust augmentation was measured for a pulsating jet, 

namely those of Lockwood (1961), and Binder and Didelle (1975), have each shown a peak of thrust 
augmentation at some value of L/D, with an approximately parabolic distribution of augmentation about 
that peak. Thus it is appropriate to use a statistical design with a 3 level set of parameters in the 
experiment. There are many parameters that can affect the performance of an ejector, e.g. ejector length, 
ejector radius, distance from jet exit to ejector entrance, ejector geometry, ratio of jet temperature to 
entrained air temperature, jet frequency, and details of the driving pulse (i.e. pulse amplitude, duration, 
and temporal distribution, and frequency). By fixing the frequency of the driving jet, having it produce an 
invariant pulse, and not heating the air supplying the jet, the list is reduced somewhat, although obviously 
at the cost of not determining the effect of these now fixed parameters. Of the remaining variables, ejector 
length, radius and nose radius were chosen as independent parameters. The distance from jet exit to 
ejector entrance was treated as a dependant parameter, i.e. it was varied for each ejector combination until 
a maximum value of thrust augmentation was found. A three parameter, three level Box-Behnken design 
(Mason, Gunst, and Hess, 1989) was chosen for the experiment. After a set of runs at one frequency, the 
tube and shroud were altered, i.e. lengthened or shortened, to give a different frequency, and a new set of 
runs made. Four frequencies were used, 1100, 550, 275, and 125 Hz. 

In order to achieve the three parameter, three level, test matrix, a set of ejectors was built as shown in 
figure 7, consisting of entrance sections, center sections, and a diffusing tail section. At each ejector 
radius, three nose sections were made, each of a different nose radius, rn, two center sections of different 
length, and one tail section. By using either no center section, a short center section, or a long one, three 
different lengths of ejector, Lej were obtained, roughly 76, 190, and 318 mm. Since prior experiments with 
steady ejectors have shown that thrust augmentation increases with the ratio of exhaust area to jet area 

(Porter and Squyers, 1979), with values as high as 100 having been used, it appeared that the experiment 
should include large ejector radius to jet radius ratios. Consequently, ratios of ejector throat radius, Rej, to 
jet shroud radius, Rs, of 1.5 (Rej = 38 mm), 3 (Rej = 76 mm), and 4.5 (Rej = 114 mm) were chosen. 
Experiments at a frequency of 550 Hz with the ratios 1.5 and 3 soon showed that the optimum 
augmentation was at a ratio less than 3. Instead of pursuing the experiments with the radius ratio 4.5 

ejectors, new sets at radius ratios of 1.1 and 2 
were made. The test matrix used is given in  
table 1, with runs 1 through 15 constituting the 
design for 1100 and 550 Hz, and runs 20 
through 28 the design for 275 and 125 Hz. 
Runs 16 through 19 are the runs performed at 
550 Hz with Rej/Rs = 3. 

In these experiments, the objective was 
measurement of thrust augmentation. However, 
an ejector also results in mass augmentation, 
and it is of interest to correlate thrust 
augmentation and mass augmentation. A hot 
wire, used to measure velocity in the ejector 
exit flow provided a means for calculating 
entrainment ratio. Details are given below.  

 

Flow

Length = Lej

Nose
radius = rn

Inlet Center section Diffuser

� = 5°

Figure 7.—Schematic drawing of the set of ejectors used
   experimentally.

Radius = Rej
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Table 1.—The matrix of test runs comprising the 3 parameter, 3 level statistical experiment  
at each of the four frequencies used 
rn/Rs α β Run  

No. 
Rej/Rs Lej/Rs 

 f = 1100 f = 550 f = 275 f = 125 f = 550 
1 1.1 3.125 0.5 1.17 1.155    
2 1.1 7.125 0.25 1.149 1.16   0.897 
3 1.1 7.625 0.75 1.134 1.155    
4 1.1 12.375 0.5 1.122 1.092    

 
5 1.5 2.875 0.25 1.099 1.264    
6 1.5 3.375 0.75 1.053 1.275    
7 1.5 7.375 0.5 1.172 1.330    
8 1.5 7.375 0.5 1.167 1.325   1.895 
9 1.5 7.375 0.5 1.169 1.308    
10 1.5 12.125 0.25 1.166 1.255    
11 1.5 12.625 0.75 1.165 1.267    

 
12 2 3.125 0.5 1.022 1.118    
13 2 7.125 0.25 1.092 1.206    
14 2 7.625 0.75 1.10 1.226    
15 2 12.375 0.5 1.167 1.266    

 
16 3 3.125 0.5  1.034    
17 3 7.125 0.25  1.075    
18 3 7.625 0.75  1.085    
19 3 12.375 0.5  1.139    

 
20 1.5 3.125 0.5   1.287 1.14  
21 1.5 7.125 0.25   1.320 1.221  
22 1.5 7.625 0.75   1.355 1.237  
23 1.5 12.375 0.5   1.326 1.265  

 
24 2 2.875 0.25   1.277 1.186  
25 2 3.375 0.75   1.343 1.218  
26 2 7.375 0.5   1.379 1.317  
27 2 7.375 0.5   1.373 1.295  
28 2 7.375 0.5   1.376 1.313  
29 2 12.125 0.25   1.305 1.271  
30 2 12.625 0.75   1.383 1.310  

 
31 3 3.125 0.5   1.053 1.075  
32 3 7.125 0.25   1.106 1.137  
33 3 7.625 0.75   1.116 1.182  
34 3 12.375 0.5   1.197 1.250  
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Apparatus 
 

The apparatus is shown in figure 8.  
The Hartmann-Sprenger tube is mounted 
vertically, with the jet flowing upwards. The 
ejector is mounted above the tube, on a sliding 
mount so that its height is easily adjustable. 
Above the ejector is a thrust plate, which is 
762 mm in diameter. The thrust plate is 
attached to an Omega load cell model  
LC601–25, having a range of ± 111 Newtons, 
to provide an electrical thrust signal. Similarly 
the ejector was attached to another load cell, 
also a model LC601–25. The signal from both 
load cells was fed to Agilent model 34401A 
averaging multimeters. All runs lasted one 
minute, during which time the voltmeters 
stored 180 readings, and then displayed the 
average value. The experimental procedure 
involved making three tests to read the thrust 
of the jet without the ejector, followed by a 
series of tests with the ejector, (two at each 
setting of jet exit to ejector distance), followed 
again by three tests reading the thrust of the 
jet without an ejector. The jet thrust, Tjet, 
defined as the average of the six test readings 
without the ejector, typically measured  
39.4 ± 0.5 Newtons. The signal from the 
ejector load cell corresponds to the additional 
thrust, ∆T, produced by the ejector. Thus the 
quantity φ, defined as  

  
 φ = 1 + ∆T/Tjet  (28) 
 

should be the same as the thrust plate measurement of thrust augmentation, α. The estimated uncertainty 
in the measurements of both α and φ is ± 0.03. 

In addition to thrust augmentation, it is desirable to measure mass flow augmentation. For this, 
measurements of the jet mass flow and the mass flow leaving the ejector are needed. Since the Mach 2 
nozzle in the resonance tube is choked, the jet mass flow can be measured upstream of the nozzle, where 
it will be a steady reading. For this a standard orifice was mounted in the supply line to the jet. The jet 
flow was measured both as a steady supersonic flow, i.e. with the resonance tube removed, and with the 
resonance tube in place. The resulting mass flow was indeed identical for the two cases, with a value of 
0.208 ± 0.001 Kg/sec. For measuring the mass flow at the exit of the ejector, two techniques were 
implemented; first, probing the flow with a high frequency pressure transducer (Endevco model  
8530C–50), mounted in the hemispherical nose of a cylinder; and second, probing the flow with a 
Thermal Systems Inc. model IFA 300 hot-wire, which provided the radial distribution of velocity at the 
ejector exit.  

Obviously it is of interest to measure the properties of the vortex rings produced, namely velocity, 
radius and core radius, for comparison with the slug model theory. To do this, the rings were probed with 
a pair of fast response transducers (Endevco model 8530C–50) each built into the nose of a hemisphere-

Resonance
tube

Ejector
load cell

3 in. diameter
ejector,
mounted on
load cell

Thrust plate,
mounted on
load cell

Figure 8.—Photograph of the apparatus, showing the thrust
   plate at the top, the shrouded Hartmann-Sprenger tube at
   the bottom, and an ejector above it.
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cylinder body, and separated radially by a distance of 25.4 mms. The probes were inserted into the flow at 
the same distance from the jet exit as the entrance to the 38 mm radius, 188 mm long, 12.7 mm nose 
radius ejector at its optimum spacing, i.e. the spacing giving maximum thrust augmentation, which was 
76 mm for this ejector. The signals from the probes were displayed on an oscilloscope, using dc coupling. 
The pair was moved radially to generate a plot of pulse pressure versus radius for the vortex rings. This 
information gave an indication of the vortex radius and core radius. Then, by spacing the probes 
equidistantly from the jet axis, at a radius at which the probes gave the minimum pressure signals (the 
minima being sharper than the maxima), but separating the probes axially, a measurement of the vortex 
ring velocity could be made. This was repeated for each frequency. For the 275 Hz frequency only, a laser 
particle image velocimeter (LPIV), as described by John, Paxson, and Wernet (2002), was used to give a 
velocity map of the vortex ring. One of the high frequency pressure probes was also placed at the jet exit 
to obtain the jet exit velocity as a function of time. 

 
 

Experimental Results 
 

Thrust Augmentation 
 

In figure 9 are shown measurements of thrust augmentation, α, versus the jet exit to ejector entrance 
distance, x, normalized by Rs, for the 38 mm radius ejector (Rej/Rs = 1.5). The results are typical of all the 
ejectors: thrust augmentation has a maximum at some distance, which depends mainly on the diameter of 
the ejector, falling off slowly as distance increases beyond the maximum, but quite rapidly as distance 
decreases below the maximum. The maximum value of φ, the thrust augmentation derived from the 
ejector load cell reading, occurs at lower values of x than does α. This may be due to a decrease in the jet 

thrust when x is small or negative, 
which is reflected in the 
measurement of α, but not of φ as 
defined above. At the maximum of 
augmentation however, and for 
larger values of x, both α and φ are in 
good agreement. In the remainder of 
this work, the thrust augmentation 
ascribed to a particular ejector is the 
maximum value of α. 

The measurements of thrust 
augmentation found in the various 
sets of Box-Behnken runs are given 
in table 1, and in figure 10(a) to (d), 
in which thrust augmentation is 
plotted against normalized ejector 
length, Lej/Rs, for each ejector radius, 
Rej, at different values of the nose 
radius, rn. The 90 percent confidence 
level in α is ± 0.03. The data from a 
Box-Behnken three parameter set can 
be fitted with a response surface of 
the form 

Figure 9.—Thrust augmentation plotted against the distance
   between the jet exit and the ejector entrance.

0 1 2 3 4
0.8

0.9

1.0

1.1

1.2

1.3

1.4

Distance jet exit to ejector/shroud radius, x/Rs

T
hr

us
t 

au
g

m
en

ta
tio

n

Data from the ejector load cell, �
Data from the thrust plate, �
Fit to the ejector load cell data
Fit to the thrust plate data



NASA/CR—2003-212541 14

 
 α  = b0 + b1.(Lej/Rs) + b2.(Rej/Rs) + b3.(rn/Rs)  
 + b11.(Lej/Rs)2 + b22.(Rej/Rs)2 + b33.(rn/Rs)2 

 + b12.(Lej.Rej)/Rs
2 + b13.(Lej.rn)/Rs

2 + b23.(Rej.rn)/Rs
2  (29) 

  
where the values of the constants bij are determined from the data. These were found by inserting the data 
into a computer program (Seshadri and Demming), which provides the constants, and values of the 
confidence level for each constant. Constants with low confidence level were eliminated, until only terms 
with levels greater than 90 percent were retained. The resulting constants are listed in table 2. Once the 
response surface is known, the optimum thrust augmentation can be predicted, together with the values of 
Lej/Rs, Rej/Rs and rn/Rs at which the optimum occurs. These values are also listed in table 2.  

Although (29) includes rn, changes in α due to changes in rn for the range of values used are very 
small, and the changes seen experimentally are statistically insignificant, except possibly for rn/Rs = 0.25, 
Rej/Rs = 2, at a frequency of 275 Hz.. Sections through the response surface at each value of ejector radius, 
Rej, for rn/Rs = 0.5, are also plotted in figure 10, showing good agreement with the experimental results. 
The optimum values predicted are little different from the maximum observed experimental values. 
 
 

Figure 10.—Results from the statistical experiments at different frequencies. (a) 1100 Hz.
   (b) 550 Hz. (c) 275 Hz. (d) 125 Hz. The lines are the response surface fit for rn/Rs = 0.5.
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Table 2.—Constants for (29)—the response surface of the Box-Behnken experimental design 
 f = 1100 Hz f = 550 Hz f = 275 Hz f = 125 Hz 
b0 1.16812 –0.18464 0.54744 0.32863 
b1 –0.01464 –0.00713 -- 0.03207 
b2 -- 1.81433 0.68699 0.64294 
b3 0.28836 0.23637 0.52521 0.44842 
b11 –0.00126 –0.00197 –0.00103 –0.00193 
b22 –0.07511 –0.62527 –0.19356 –0.15947 
b33 –0.41306 –0.21744 –0.30355 –0.39603 
b12 0.02336 0.02591 0.01052 0.00505 
b13 0.01187 -- --  
b23 -- -- –0.06310  
αmax 1.189 1.331 1.385 1.338 

1.98 1.62 1.91 2.21 

12.6 8.9 9.9 11.2 maxfor

/

/

/

α








sn

sej

sej

Rr

RL

RR

 

0.5 0.5 0.75 0.5 

 
 

Vortex Ring Probing 
 
Signals from the high frequency pressure probes sampling the vortex rings at a distance (usually  

76 mm) from the nozzle exit, are shown in the oscillogram in figure 11(a), taken at a frequency of  
550 Hz, As indicated in the sketch in figure 11(b), two probes were used, both aligned with the z axis, and 
spaced 25.4 mm apart. The upper oscillogram is from the probe closer to the axis of the jet, and exhibits a 
rise in pressure with time, followed by a decay, returning to atmospheric pressure at about half the period 
of the pulses. After the signal returned to atmospheric, there appeared to be a high frequency oscillation 
on it, lasting until the next pulse. As the probe was moved radially, away from the jet axis, the value of 
the peak pressure first increased slightly, then decreased to zero at a radial position equal to about  
1.2 times the jet radius. At distances greater than this, a pulse was seen which was a decrease in pressure, 
with a minimum pressure well below atmospheric, as shown by the lower oscillogram in figure 11(a), 
which is from the probe further from the axis. The values of the pulse extrema, expressed as pressures, are 
plotted as a function of distance from the jet axis in figure 11(b). For a frequency of 550 Hz, the absolute 
outer edge of the disturbance, where there is no longer any signal, is at a radial position of 3.2 times the 
jet radius, i.e. 81 mm, much larger than the optimum ejector radius. The optimum ejector radius 
corresponds approximately to the position of the minimum of the negative pressure signals, i.e. 1.5 times 
the jet exit radius at a frequency of 550 Hz. These measurements were repeated at each frequency used. 

The positive signals are generated when the probe is acting as a Pitot probe, with flow directed 
towards the transducer. The negative signals are partly generated when the probe is in the core of the 
vortex ring, such that the flow is in the opposite direction, and the probe is acting more like a static 
pressure probe. This will become more obvious below. 

As stated above, in order to measure the vortex ring velocity, W, the probes were separated axially by 
a distance varying between 50 to 100 mm, depending on the frequency, and were each at a radial distance 
from the axis such that they were sampling the pressure minima. Velocities derived from these signals are 
given in table 3. Each velocity is an average of about 15 readings. Some variation in velocity with probe 
axial separation, and with position of the leading probe relative to the nozzle exit, was observed, but was 
less than the experimental error. Also listed in table 3 are the values of the thrust of the jet alone for each 
frequency. The thrust was not the same at each frequency used, although the mass flow was. This implies 
that the jet exit velocity U was not the same for each frequency. Since the vortex ring velocity is 
proportional to U, it is appropriate for comparison to correct the vortex ring velocity to a common thrust 
of 39.4 Newtons by multiplying the observed value of W by 39.4/Tjet. The corrected values are also given 
in table 3.  
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Figure 11.—(a) Oscillograms of high frequency pressure probe data. (b) Plot of the
   pressure pulse extrema versus normalized probe position for 1100 Hz, 550 Hz, 
   275 Hz, and 125 Hz, and fits to the data.
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Table 3.—Measured vortex ring velocity, and thrust corrected vortex ring velocity 
 f = 1100 Hz f = 550 Hz f = 275 Hz f = 125 Hz 
W from pitot probes (m/s) 73 77 83 77 
W from LPIV   79  
Thrust (Newtons) 40 44.7 39.3 33.8 
W corrected to 39.4 Newtons 72 68 83/79 89 
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Laser particle image velocimetry was used to measure velocities within the vortex ring, for a 
frequency of 275 Hz only. The values of axial velocity along a radius at the centre of the ring are plotted 
in figure 13. The velocity of the vortex ring itself is 79 m/s. This velocity occurs at the vortex radius R. 
The maxima and minima of velocity are at radii of R – a, and R + a respectively, from which  
R = 33.3 mm, a = 18 mm, and hence ε = 0.54. A sketch of the vortex ring is on the right hand side of 
figure 12. The minimum signal from the pressure probes is at a radius of 43.2 mm, at which radius the 
velocity is zero. This radius is close to R + a/2. For greater radii, the velocity over the probes is negative, 
so they are not then acting as total pressure probes.  

The LPIV data provide a map of vorticity ω over the entire field of view. The circulation in the vortex 
ring can be determined from this by performing the integral 

 
 Kring = ∫∫ ω dr dz  (30) 
 

The result is Kring = 13.7 m2/s. The integration was performed numerically from large radius to zero. The 
circulation increased as the radius decreased, reaching a maximum of 23.9 m2s–1 at a radius of 15.8 mm, 
then decreasing to the value of 13.7 m2s–1 on the centerline. This is a consequence of the flow coming 
from an annulus, so that vorticity shed from the inner diameter is of opposite sign from that generated at 
the outer diameter, thereby reducing the total circulation.  
 
 
 

Figure 12.—Velocities on the r axis through the vortex ring as a function
   of normalized radial position. The velocities come from LPIV data. 
   Vc = K/2	a = 130 m/s is the velocity at the edge of the core.
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Figure 13.—Time averaged velocity at the ejector exit as a function of
   normalized radius. The data is from hot-wire measurements.
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Ejector Exit Velocity 

 
Measurements of ejector exit velocity were made using the 550 Hz source only, with the  

27.9 mm radius and 38 mm radius ejectors. Initial attempts to use the high frequency pressure probes to 
sample the exit velocity of the ejector were abandoned as the signal was too small to be accurate. Instead, 
a hot wire was used to measure velocity. The signals showed periodic fluctuations in velocity, with the 
period equal to that of the source. The fluctuations were quite large; for example, with the hot-wire on the 
centerline of the 38 mm radius ejector, the average velocity was 93 m/sec, the maximum was 142 m/sec, 
and the minimum was 79 m/sec. The hot-wire was set at different radial positions, and the velocity 
measured. The resulting average velocity as a function of radius is shown in figure 13, for both ejectors. 
The distribution with radius is remarkably smooth, and the curves can be integrated to give the volume 
flow rate, and hence the mass entrainment factor β, defined as ingested mass divided by the jet mass flow. 
The resulting values of β are given in table 1. Dividing the volume flow rate by the area inside the ejector, 
πRej

2, gives an average velocity inside the ejector, which was 108 m/sec for the 38 mm radius ejector,  
132 m/sec for the 28 mm radius ejector, i.e. larger than the vortex ring velocity. 

  
 

Jet Exit Velocity 
 
By placing one of the high frequency pressure probes used to sample the vortex ring exactly in the 

exit plane of the jet, a signal is obtained which can be related to the jet exit velocity. This was done at a 
frequency of 275 Hz only. The resulting velocity is plotted in figure 14. The flow starts with a weak 
shock wave (Mach number = 1.25), and, after an initial spike, is approximately constant for a while 
before falling off. An average flow exit velocity can be derived from the thrust, namely 

 
 U = Tjet/ jetm&   (31) 
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Figure 14.—Flow velocity at the exit of the Hartmann-Sprenger tube
   as a function of time, for f = 275 Hz. Data from the high frequency 
   pressure probe.
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This gives a value of 189 m/sec, which is also shown in figure 14, and is in good agreement with the 
probe results. The probe velocities can be integrated to give a value for (U2/U1)2 of 1.1, the value used in 
figure 2(b) in deriving L/D versus α for a jet with velocity that is not constant with time. 

 
 

Comparison Between the Slug Model and Experimental Results 
 
The experiments were performed at four different frequencies. Since the mass flow was constant at all 

frequencies, the mass per pulse mp is given by  
 
 mp = jetm& /f  (32) 
 

in which f is frequency. But mp is also given by the product of pulse volume and density 
 
 mp = ρ π (Ds

2 – dt
2) L/4  (33) 

 
from which it is seen that L/D is inversely proportional to frequency. In referring to the slug flow model, 
it is clear that the appropriate diameter appearing in L/D is twice the square root of the flow area divided 

by π, i.e. for the Hartmann–Sprenger tube it is D = ( )22
ts dD − . In table 4 the values of L/D for each 

frequency used are given together with values of ε from (6b) for the two higher frequencies. For the lower 
frequencies, since the vortex probing showed that the vortex rings were the same size for both 
frequencies, ε is the same for both, and equal to the value measured from the LPIV data, namely 0.54. 
Gharib (1998) showed that above some cut-off value of L/D, the circulation of the vortex ring remains 
constant as L/D increases, with the remaining circulation going into a trailing jet. In Gharib’s case, the 
limiting value of L/D was 4. If this were the case for the present experiments, the vortex rings for 550,  
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Table 4.—L/D and ε for each frequency used, together with the maximum thrust  
augmentation observed for each Rej, as corrected to a thrust of 39.4 Newtons. 

Frequency (Hz) 1100 550 275 125 
L/D 2.5 5 10 22 
ε 0.177 0.386 0.54 0.54 
αmax for Rej/Rs = 1.1 1.16 1.141 -- -- 
αmax for Rej/Rs = 1.5 1.167 1.284 1.342 1.269 
αmax for Rej/Rs = 2.0 1.167 1.239 1.376 1.36 
αmax for Rej/Rs = 3.0 -- 1.124 1.197 1.187 

 
 
275, and 125 Hz, which all have L/D greater than 4, should all be the same size. In fact the 550 Hz vortex 
rings are smaller than those at 275 and 125 Hz. This indicates that the cut-off point appears at a higher 
value of L/D than 4. From (6b), the maximum value of ε observed, i.e. 0.54, occurs at an L/D of 6.86. 
This will then be taken to be the cut-off value, L/Dco, for these vortex rings.  

The measurements at 275 and 125 Hz are at values of L/D above the cut-off point. In these cases the 
flow consists of a leading vortex ring and a trailing jet. The thrust on the ejector will be partially due to 
the vortex ring and partially to the trailing jet. There will be a time, t’, following initiation of the jet at 
which the value of L = ∫ ′t

o  u(t)dt corresponds to L/Dco. The fraction of the total jet impulse that is in this 
portion of the jet is 

 
 fvr = ∫ ′t

o u(t)2 dt/ ∫ τ
o u(t)2 dt  (34) 

 
in which τ = 1/f is the period of the oscillations. It is this fraction of the impulse that goes into forming the 
vortex ring, giving rise to a thrust augmentation αvr. The remaining impulse will be in the trailing jet, 
which will be assumed to create a thrust augmentation as would a steady jet. Thrust augmentation for a 
steady jet depends on the ratio of ejector area to jet area. In order to quantify this, the following 
expression was used for the steady thrust augmentation 

 
 αs = 1.0855 + 0.1043 ln (Dej

2/D2)  (35) 
 
This is consistent with a plot of αs versus area ratio from Porter and Squyers (1979). Thus, for L/D 

greater than the cut-off value, the total thrust augmentation will be 
 
 αtotal = fvr αvr + (1 – fvr) αs  (36) 
 

in which αvr is calculated at cut-off. The value of fvr was derived from the jet velocity distribution of 
figure 14. However, for computational purposes, it was more convenient to have an analytical expression, 
which was derived from assuming the velocity distribution is triangular, i.e. u(t) = 2U (1 – t/τ). It then 
follows that  

 
 t′/τ = 1 – ( )DLDL co /1−  (37) 
 

and  
 
 fvr = 3 (t′/τ) (1 – t′/τ + (t′/τ)2 /3)  (38) 
 

Results with the triangular model were in good agreement with the numerical results for the actual 
velocity distribution.  
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The probe measurements in figure 11(b) 
show that the pulse minima are at a value of 
r/Rs = 1.7 for the 275 and 125 Hz rings. The 
LPIV data in figure 12 indicate that this is the 
radius at which the velocity is zero, and is 
approximately equal to R + a/2. Assuming then 
that the probe minima are at a radius of R + 
a/2, and using the values of ε in table 4, the 
value of R + a can be calculated for each 
frequency, and plotted against L/D. The results 
are shown in figure 15, together with the LPIV 
value at 275 Hz, and the calculated values from 
the slug model, assuming a cut-off at L/D = 
6.86. The agreement is very good. 

In figure 16, the observed vortex ring 
velocities, as corrected for thrust, are also 
plotted against L/D, together with the values 
calculated from the slug model, again assuming 
a cut-off at L/D = 6.86. The calculated values 
are too high, and better agreement with the 
measurements is obtained by multiplying the 
value of Kring calculated from (3) in the slug 
model by 0.72. Doing so gives a calculated 
circulation of 14.4 m2/s and vortex ring velocity 
of 80 m/s at ε = 0.54. This compares well with 
the value of Kring = 13.7 m2/s from the LPIV 
data and vortex ring velocities of 83 m/s from 
the probe measurements, and 79 m/s from the 
LPIV data. It might be thought that the high 
value of W calculated from the slug is because 
the value of Γ used in (3) is too high. However, 
Γ also appears in (8), the equation for the 
vortex ring radius, so if Γ were reduced, the 
good agreement between calculated and 
observed ring radius would be diminished. In 
fact the discrepancy is because the circulation 
calculated in (3) is based on the circulation 
created at the outer edge of the shroud only. As 
shown by the LPIV data, there is vorticity of 
opposite sign shed at the inner tube, which 
reduces the total circulation. Multiplying the 
calculated Kring by 0.72 accounts for this, giving 
a value of Kring in agreement with the measured 
value, as well as agreement between measured 
and calculated vortex ring velocity.  

Using the factor 0.72 to correct Kring, (20) can be used to calculate the thrust augmentation for L/D 
less than L/Dco, and (35) for L/D greater than L/Dco. The results in figure 17 show thrust augmentation 
plotted against ejector radius for both calculated and experimental thrust augmentation, corrected to a jet 
thrust of 39.4 Newtons. From (20) it can be seen that (αvr – 1) ~ Vej

2/Tjet. The ejector velocity Vej is 
assumed proportional to W, which scales with U, which in turn is proportional to Tjet since jetm& is 

Figure 15.—Normalized value of (R + a) versus L/D.
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constant. Therefore (αvr – 1) ~ Tjet, and for comparison of the values of thrust augmentation at different 
frequencies, and hence different thrusts, the observed values of (α – 1) should be corrected by multiplying 
by 39.4/Tjet. The corrected values of the maximum thrust augmentation observed at any one frequency and 
ejector radius, are listed in table 4, and plotted in figures 17 and 18. To fit the calculation to the data it 
was found that in (26) a value of n = 1.5 was optimum, and also that Rvr = R + 2a/3. Thus the optimum 
ejector diameter is R + 2a/3. The factor k was set equal to 1.37. This is not inconsistent with the value 
observed in the hot wire measurements. On the whole, the agreement between data and calculation is 
reasonable. In figure 18, the calculated and corrected experimental thrust augmentations are plotted 
against L/D, for a nose radius rn/Rs of 0.5. Below L/Dco, the measured α is compared with (20), i.e. αvr. 
Above L/Dco, the measured α is compared with (36), the calculated αtotal. Again the agreement is 
reasonable. In particular, it is apparent that the calculation has the same trend as the data as regards the 
optimum ejector diameter; at low L/D, the 28 mm radius ejector is best, switching over to the 38 mm 
radius for an L/D of about 1.8 to 6, after which the 51 mm radius is best. In addition, for L/D greater than 
L/Dco, the calculations predict that as L/D increases, the thrust augmentation decreases for the ejectors 
with a radius of 51 mm or less, and increases for the ejector with a radius of 76 mm. The data exhibits the 
same trend. The steady state values of thrust augmentation are drawn in figure 18 as the horizontal lines 
on the right hand side. Above L/Dco, the data are heading towards these values. 

 
 
 

Figure 17.—Thrust augmentation versus normalized ejector radius.
   The calculations are from equation (20) for f = 1100 Hz and 550 Hz,
   and from equation (35) for f = 275 Hz and 125 Hz.
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Figure 18.—Thrust augmentation plotted against L/D. The short horizontal
   lines at the right indicate the steady state thrust augmentation, i.e. thrust
   augmentation at L/D = 
, for each ejector radius. The calculations are 
   from equation (20) for L/D < L/Dco, from equation (35) for L/D > L/Dco.
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Comments 
 
The most controversial assumptions in this work are that the ejector flow is quasi-steady, and that the 

pressure at the trailing edge of the ejector is ambient. It is true that the observations of velocity at the exit 
of the ejector did exhibit significant oscillations, but the average flow velocity observed was in line with 
the value used in the calculation of thrust augmentation. The flow velocity at the ejector exit fell off with 
radius, and was small at the ejector lip, where the pressure was measured to be atmospheric. Had there 
been a large flow around the trailing edge, it could have generated suction, i.e. low pressure, and hence 
drag on the ejector. Since neither high flow velocity, nor low pressure was observed, there appears to be 
no significant drag on the trailing edge. Thus the assumptions do seem reasonable. Moreover, the 
resulting calculations seem to fit the data quite well.  

What this model does not do is explain any effect of ejector length, yet the experiments clearly show 
that there is one, and that there is an optimum length. The longer the ejector is, the more frictional drag 
there will be, so a maximum length could be determined when friction is included. As constituted, the 
model can not explain why a short length is worse than the optimum length. Possibly this is because the 
entrained flow does not become a directed flow in a short length, but this is only speculation, and this 
point needs further study. These experiments indicate that a length of about twice the ejector diameter is 
optimum. This is longer than claimed by Lockwood (1961), but shorter than optimum length to diameter 
ratios found by Paxson et al. (2002), or Binder and Didelle (1975). 

The calculations, when fitted to the experiments, do show an optimum ejector radius of Rej =  
R + 2a/3. Since the larger the value of Rej is, the greater the thrust augmentation will be, it behooves 
having the largest possible vortex ring radius R. The value of R + 2a/3 grows as L/D increases, up to 
L/Dco, but remains at this size for larger L/D. Thus the driving jet should be operated at L/Dco. At values 
of L/D greater than L/Dco, not only does R + 2a/3 remain fixed, but a smaller fraction of the total 
circulation goes to the vortex ring, and so the vortex ring thrust augmentation decreases. For very large 
values of L/D, higher thrust augmentation is possible at larger diameters, as indicated by the data for the 
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76 mm radius ejector at L/D = 22, but the augmentation will then correspond to the steady value. For 
steady ejectors, as stated above, high thrust augmentation is achieved with high ratios of Rej/Rs, and the 
optimum Lej appears to be around 2 to 4 times Rej, so the ejector will be long. 

Given that the optimum operating point for the driving jet is at L/Dco, an estimate can be made for the 
maximum possible thrust augmentation. At L/Dco, the value of R + 2a/3 is approximately equal to D. For 
a duty cycle of 0.5, appropriate for the Hartmann-Sprenger tube, the jet thrust is given by 0.5 ρU 2 πD2/4. 
Inserting these relations, plus Vej = k W, into (20) gives 

 
 αvr = 1 + π ρ (kW)2 F(σ)/ρU 2 π/8  
  
  = 1 + 8 (kW/U)2 F(σ) (39) 
 

From the slug model, for a circular, i.e. non-annular exit, W/U ≈ 0.5 at L/Dco, so with k = 1.37, and a 
reasonable value of F(σ) = 0.3, the maximum αvr is 2.1. For the annulus used in these experiments, since 
W/U is less than 0.5, the maximum value of αvr is 1.58. 

  
 

Conclusions 
 
In conclusion, the slug model appears to predict the vortex ring size and velocity correctly, provided 

proper account is taken of the dependence of circulation on L/D and exit geometry. The simple model of 
ejector performance, assuming a constant ejector velocity proportional to the vortex ring velocity, and 
dependant on ejector radius, does seem to explain some of the features of pulsed ejector flow, and 
predicts an optimum ejector radius of R + 2a/3. The optimum jet L/D for pulsed thrust augmentation is 
shown to be the cut-off value L/Dco. The maximum possible thrust augmentation possible is estimated to 
be about 2. For the annular exit used in the present experiment, since W/U is lower than for a circular exit, 
the maximum thrust is limited to 1.6.  
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